Aluminum Alloys for Metal Stamping

An aluminum alloy is a chemical composition in which other elements are added to pure aluminum to enhance its properties—primarily to improve its strength. The elements often added to aluminum include:

  • Silicon
  • Iron
  • Magnesium
  • Copper
  • Zinc
  • Manganese

They can sometimes make up at least 15% of the final alloy by weight.

Aluminum Alloys

Every aluminum alloy is assigned a four-digit number. The first digit identifies the general class, or series, that is characterized by its main alloying elements. The types of alloys include:

  • Commercially pure alloys
  • Heat-treatable alloys
  • Non-heat-treatable alloys

Temper designations for non-heat-treatable alloys are indicated by a suffix added to the alloy number.

Some key characteristics of aluminum alloys are:

  • High strength-to-weight ratio
  • Flexible and malleable
  • Corrosion-resistant
  • Shiny and smooth decorative finish that requires little maintenance
  • Thermal and electrical conductivity
  • Low temperature resistance

Aluminum alloys provide a variety of benefits, particularly for applications that need strength without heavy weight. The alloys are one of the lightest metals used in commercial projects, and they often appear in applications for the transportation industry because reductions in weight help with fuel savings. Furthermore, aluminum alloys’ light weight and natural corrosion resistance result in the parts lasting longer as well as allowing them to be made from significantly less raw material. Since aluminum is flexible and malleable, metal stamping can form aluminum and aluminum alloys into complex geometric shapes.

Aluminum alloy applications include, but are not limited to, the following:

  • Aluminum cans
  • Aerospace
  • Building & construction
  • Automotive
  • Foil & packaging
  • Electronics & appliances

Aluminum Alloys for Metal Stamping

There are three main aluminum alloys used for metal stamping:

  • 1100: Commercially pure aluminum. It is ductile and soft, with good workability. It’s useful for applications that require intricate forming because it hardens slower than other alloys. Common applications include kitchenware, decorative trim, and giftware.
  • 3003: The most frequently used of all aluminum alloys. It is commercially pure aluminum with manganese added, which increases its strength by about 20% over 1100. It has great corrosion-resistance and workability, allowing it to be welded, deep drawn or spun, or brazed. Common applications include cooking utensils, kitchen equipment, and chemical equipment.
  • 5052: The highest strength alloy of the common non-heat-treatable grades. Its fatigue strength is better than other alloys, and it has excellent resistance to the marine atmosphere and saltwater corrosion. It has optimal workability and good finishing characteristics. Its common applications include aircraft components, home appliances, and heavy-duty cooking utensils.

When choosing an aluminum grade, there are a few factors to consider:

  • Its level of formability or workability
  • Weldability
  • Machining
  • Its level of corrosion-resistance
  • Heat treating
  • Strength
  • Typical end-use applications

Contact Us for the Top Selection of Aluminum Alloys

For the best turnaround time and price, Keats Manufacturing recommends selecting common gauge and common alloys. Since 1958, we have been crafting stamped metal parts to each client’s needs. We have a strict adherence to our quality control system, ensuring that your customer satisfaction and confidence are our top priority.

Over the decades, unique projects and parts have come through our facility. Decisions for design details and custom tooling influence the performance of the parts, but the material used is always the most critical decision made in the manufacturing process.

To learn more about how we can help with your next project, contact our team. For more information about the materials we use, check out our downloadable eBook, Choosing the Best Raw Materials.

Aluminum Alloys for Metal Stamping

Steel Alloys Used in Custom Metal Stamping Process

Steel is one of the most widely used alloys and is comprised of carbon (less than 2%) and manganese (1%). Other small amounts of silicon, phosphorus, sulphur, and oxygen are also present. Steel is an integral component to almost all forms of production and construction, ranging from surgical equipment to household items.

This type of metal is 100% recyclable, and steel products last for approximately 40 years. It is produced from either the Blast Furnace Basic Oxygen Route (BF-BOF) or from the Electric Arc Furnace (EAF) route. Both of these routes contribute to the production of crude steel. The Blast Furnace Basic Furnace Oxygen Route utilizes the following to manufacture crude steel:

  • Iron ore
  • Coal
  • Limestone
  • Steel scrap

The Electric Arc Furnace Method utilizes all of these and electricity for crude steel manufacturing.

Since the magnetic properties remain unchanged, this metal can be continuously recycled. Recycled steel can serve as input for BF-BOF and EAP methods, contributing to the production of many new steel products. They contain approximately 37% of recycled steel. Because of its lightweight structure, cost efficiency, corrosion resistance, and energy efficiency, steel is used in almost every type of building and construction process. Applications constructed with this material include:

  • Automobiles
  • Buildings and infrastructure
  • Metal products
  • Mechanical/electrical equipment
  • Domestic appliances

Types of Steel Alloys

There are more than 3,500 grades of steel that are integral to engineering and construction projects. All contain forms of sulphur, phosphorus, and manganese. Manganese is beneficial to steel’s sustainability; however, too much phosphorus and sulphur in the alloy can have detrimental effects on steel’s durable properties.

There are four categories of this material:

Carbon Steels are used in 90% of steel production and contain trace elements of alloy products. They are classified into three subcategories: low, medium, and high. Low carbon steels contain up to 0.3% carbon, medium steels contain 0.3-0.6% carbon, and high steels contain more than 0.6%. They can be formed into a variety of shapes, ranging from Flat Sheet to Structural Beam.

Alloy Steels are used for pipelines, transformers, auto parts, power generators, and electric motors. Heat applications soften the material for welding and cutting applications. They contain:

  • Manganese
  • Silicon
  • Nickel
  • Titanium
  • Copper
  • Chromium
  • Aluminum

Stainless Steels are extremely resistant to corrosion, due to its high chromium content (10-20%). They are grouped into three subcategories, based on crystalline molecular structure:

  • Austenitic (piping, kitchen utensils)
  • Ferritic (automotive, appliances, industrial equipment)
  • Martensitic (cutting tools, dental, and surgical equipment)

Tool Steels are durable and heat resistant. The addition of tungsten, molybdenum, cobalt, and vanadium makes the raw material suitable for the production of dental and surgical equipment.

Learn More About Using Steel Alloys for Your Next Project

At Keats Manufacturing Company, we provide custom steel metal stamping. Since 1958, we have produced assortments of components for industries ranging from aerospace and automotive industries to communications, construction, medical, and military industries.

Primary steel alloys we use in the custom stamping process:

  • 1008 /1010 – Cold Rolled Steel / Low Carbon / Usually cold formed and post plated
  • 1050 – Annealed Spring Steel / Considered High Carbon for us / Usually heat treated after stamping – Used for clips mostly
  • 1075 – Annealed Spring Steel / Considered High Carbon for us / Usually heat treated after stamping – Used for clips mostly
  • HSLA – (High Strength Low Alloy)

We engineer our tool and die sets in-house and frequently work with high-volume production projects. We offer multi-slide and full-slide stamping, which is best suited for complex bending operations for metal parts. We also offer full-service customer metal stamping (heat treating, plating, e-coating, screw insertion, tape and reel). Our focus is on quality control as we strive to customize stamping parts to clients’ specifications, budget, and turnaround time.

To learn more about our products or if you’d like to get started on your steel alloy project, contact us today and a member of our team will walk you through all the details.

Steel-Alloys-Used-in-Custom-Metal-Stamping-Process

Copper Alloys for Metal Stamping

Copper is widely regarded as one of the oldest metals used by man. For centuries, copper has been forged and shaped into a variety of useful everyday items from tools and jewelry to, more recently, electrical equipment and household appliances.

Copper possesses a broad range of desirable mechanical and chemical properties, making it one of the most versatile and extensively used engineering materials. The properties of copper can be further enhanced by alloying it with other metals, creating solutions for applications that would otherwise be unsuitable for either material alone.

The construction industry is the single largest consumer of copper, with an annual consumption rate of 47%. The electrical industry is also known for its heavy reliance on copper, with an annual usage of 23%. Other sectors such as the transportation, consumer products, and machining industries account for the remainder of copper usage.

The usage of copper and its alloys continues to grow exponentially, with the total annual consumption across all industries currently exceeding 18 million tons per annum.

Copper Alloys

Copper alloys usually come in the form of brass, phosphor bronze, aluminum bronze, silicon bronze, cupronickel, and nickel silvers. Each of these alloys enhances the properties of copper and can be stamped for use in numerous applications across a broad spectrum of industries. Typical applications for copper alloys include, but are not limited to:

  • Electrical wiring and circuitry
  • Spark plugs
  • Refrigeration tubing and coils
  • Power transmission lines
  • Cooking utensils
  • Heat exchangers
  • Plumbing
  • Arms and ammunition
  • Roofing
  • Architectural cladding

Compared to other metals, copper possesses the highest level of electrical conductivity. second only to silver—the conductivity of copper is 97% that of silver. This attribute, coupled with other unique properties make copper ideal for electrical components such as connectors, coils, and terminals.

Copper is also widely praised for its excellent corrosion resistance, especially in freshwater and high-temperature environments. When exposed to air and moisture, copper forms a thin, durable, and tightly adherent oxide film known as patina. The patina layer acts as a barrier which blocks moisture from coming into contact with the underlying material, thus preventing further corrosion.

Finally, the copper property most pertinent to metal stamping is its formability. Copper is highly malleable and ductile, allowing it to be formed into a variety of shapes for almost any application. Copper alloys such as brasses, bronzes, and nickel silvers increase in strength during cold working in a process known as work hardening. This process readjusts the copper’s crystalline structure, making it resistant to further deformation. Deep drawing, coining, bending, and stretching are some of the forming methods used to create a wide range of components, such as bathroom fixtures and household appliances.

Other desirable properties of copper include excellent biofouling resistance, non-magnetic structure, superior thermal conductivity, and ease of joining (bolting, welding, riveting, brazing, soldering).

Learn More

At Keats Manufacturing Company, we implement a robust material requirements planning (MRP) system to ensure an efficient production process. Quantities of copper and other raw materials are planned, scheduled, and controlled to ensure that they are always available when required. For the fastest turnaround for your project, we recommend that you select common copper gauges and common alloy types.

Our manufacturing facilities are outfitted with more than 142 metal stamping and wire forming machines that operate around the clock five days a week. Our specialized tools and qualified staff are capable of meeting almost any production demand and have served the aerospace, medical, construction, military, communications, and electronics industry for 60 years.

If you would like to learn more about metal stamping and the best materials for your application, feel free to download our free eBook: Choosing the Best Raw Materials.

Metal Stamping and Precision Machined Components in the Automotive Sector

Automobiles rely on a wide range of components to operate safely and efficiently. Most of these components — which are found in every part of a vehicle, from its frame to its electrical systems — are manufactured using metal stamping and precision machining methods.

Metal stamping, also referred to as pressing, involves placing a sheet or coil of metal into a press and forming it into the desired shape over a die or mold. This can be done in one stage or over several stages, depending on the complexity of the required end product.

Automotive stamping allows for the manufacture of many different functioning parts, which are used in automotive bodies and frames, as well as electrical, steering, alternator, and fuel systems. These components play a crucial role in ensuring optimal safety and functionality.

Terminals and Electrical Connectors

The auto industry produces thousands of vehicles a year, and hundreds of terminals and electrical connectors are installed in each vehicle.

Automotive manufacturers typically employ connectors with a two-piece socket and tab design. Using flexible materials, the male and female component ends can easily attach and disconnect, allowing for great durability and flexibility. This is crucial, given the amount of abuse these components take from weather, general wear and tear, chemical exposure, and other harsh elements cars encounter on the road.

As the auto industry depends more and more on electrical systems, demand will rise for highly protected, durable terminals and connectors. These components can be made from a variety of different materials — including copper, brass, phosphor bronze, and various grades of steel — using four/multi-slide forming and progressive die and metal stamping techniques.

Automotive Wire Forms

The wire forming process involves pulling a strip of metal through a series of lubricated metal dies or molds so it can take the desired shape. Allowing for many wire sizes and shapes, this simple, versatile process can even be applied to glass. Commonly worked materials include titanium and copper, but the ideal material choice will depend on the specific application at hand.

Wire formed products are used in a wide range of applications, including construction, which makes use of rebar, as well as heating elements and even mattresses, which make use of springs and coils. In the auto industry, wire formed products are found in tires and under chassis.

Automotive Brackets and Hangers

Metal brackets are also found in many different automotive applications — door panels, instrument panels, fender assemblies, and airbags, to name just a few. Primarily used to fasten one component to another, brackets can be manufactured from metals such as steel, as well as various other high-strength, oxidation-resistant alloys. Since automotive brackets may be exposed to the elements, these properties are particularly important.

Learn More

Metal stamping and precision machining techniques are essential for ensuring optimal safety, reliability, and comfort in all types of vehicles. These processes, whether complex or simple, require experienced and dedicated technicians; companies should be sure to partner with knowledgeable industry leaders who can provide reliable solutions tailored to the specific application at hand. Components must be durable enough to withstand years of use in varying road and weather conditions, so quality is of utmost importance.

At Keats Manufacturing Co., we’re proud to offer industry-leading wire form design and manufacturing services. Committed to quality in everything we do, our facilities are ISO 9001, ISO 14001 and TS 16949 compliant, and we make use of the latest technological innovations, including CAD/CAM. Our operations are overseen by 25 of the industry’s most experienced die makers.

For more information on our custom metal stamping services for the automotive industry and discuss automotive component manufacturing options for your unique application, reach out to the team today.

Keats Manufacturing Achieves IATF 16949:2016 Certification

Keats Manufacturing is pleased to announce that we have achieved certification under IATF 16949:2016, a technical specification for quality management systems in the automotive sector as set forth by the International Automotive Task Force (IATF).

What is IATF 16949:2016 certification?

A Quality Management System (QMS) is a set of processes, policies, records, and documented procedures that lay out the internal rules under which a company produces and delivers its products and services to customers. Within the automotive industry, one of the most ubiquitous international standards for quality management is the ISO/TS 16949. This standard harmonizes the various certification systems and assessments in the world’s automotive supply chain.

What is the significance of the certification?

This IATF certification demonstrates a consistent commitment to customer satisfaction and quality of products and services. Both internal and external audits of our QMS documentation show that Keats Manufacturing has a high-standard Quality Management System in place and that we operate accordingly.

What requirements must a company meet to be certified?

IATF16949 consists of 11 sections, seven of which detail the requirements for an organization’s QMS in order to qualify for certification:

  • Section 4: Context of the organization – The organization must determine its context in terms of the QMS, including the needs and expectations of interested parties.
  • Section 5: Leadership – Top management must show leadership and commitment to implementation of the QMS as well as assign process owners and other roles and responsibilities.
  • Section 7: Support – This section details the QMS requirements for infrastructure, people, organizational knowledge, competence, communication, awareness, work environment, monitoring and measuring of resources, and documentation of information.
  • Section 8: Operation – The organization must meet product requirements in all aspects of planning and creating their product or service. This section addresses planning, review of product requirements, design, purchasing, creation of products or services, and control of the equipment for monitoring and measuring the product or service.
  • Section 9: Performance evaluation – The organization must effectively monitor the functionality of the QMS. They must assess customer satisfaction, perform internal audits, monitor products and processes, and review management.
  • Section 10: Improvement – An organization must continually improve the QMS, meeting requirements for nonconformities and corrective actions, error-proofing processes, and problem solving.

Once the processes and procedures have been designed and implemented for a period of time, the records collected during the operation of the QMS serve as the basis for audits, reviews of the system, and, ultimately, certification.

How is this newer version of the certification different?

The updated version of ISO/TS 16949, IATF 16949:2016 was published on October 3rd, 2016. It replaces the previous ISO/TS 16949 and sets forth the requirements for a QMS used by an organization within the automotive industry. Meant to be used with ISO 9001:2015, it supplements the requirements for a stand-alone QMS, customizing the standard to the specifics of the automotive industry.

IATF 16949:2016 blends various standards from across the United States and Europe. It outlines best practices for the design, development, manufacture, installation, and service of automotive products. This international measure of quality is the gold standard for any company to develop a system for ensuring improvement and customer satisfaction.

What does the certification mean for Keats’ customers?

We take automotive quality very seriously. The purpose of the IATF certification is to ensure that our customers can rely on faithful delivery of high-quality products. Keats Manufacturing has long been committed to customer satisfaction and ongoing improvements, and this certification is evidence of that commitment.

To download our IATF 16949:2016 certification and our other quality certifications, click here.